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Static and Dynamic Performances
of A Round-belt Twist Actuator Mechanism

Takahiro Inoue! and Shinichi Hirai?

Abstract— This paper introduces a novel joint mechanism
composed of an Antagonistically-twisted Round-belt Actuator
(ARA), which is able to make rotating motion by means of
contraction forces induced by twisting small-diameter elastic
round-belts. First, we formulate Young’s modulus model of
a round-belt on a constant-volume basis suitable for largely-
deformable elastic materials. As a result, we show by exper-
imental results that the Young’s modulus varies with respect
to the number of twist rotations of the belt. This means that
the Young’s modulus linearly decreases as the twist rotation
increases. Next, this paper reveals a linear transmission ratio
between the joint angle and the twist rotation of an ARA robot,
which corresponds to so-called speed reduction capability. In
addition, we introduce a twist-drive mechanism in which twin-
twisted round-belts are located at the agonist side of the robot.
Finally, we demonstrate the position control of the robotic
link, and verify that a simple traditional PI controller enables
suppression of the oscillating motion of the joint.

I. INTRODUCTION

During the past decades, there has been a lot of in-
terest in wearable robots, rehabilitation robots, and power
assist robots for human daily lives for both healthy people
and people with disabilities. Such practical applications are
particularly required to be light-weight, low cost, and of
compact designs and mechanisms. Natural and quick me-
chanical response for the manipulating intention of users is
also indispensable for practical usage.

To this end, a novel actuation system based on twisted
string actuator (TSA), which is able to easily meet high
output-weight ratio and force transmission efficiency, has
been developed. One of the advantages of TSA is effective
motional conversion on the drive-line of robot systems.
That is, as illustrated in Fig. 1, translational motion due
to contraction on the outside diameter of a pulley can be
generated by twisting a string, for which a rotational actuator,
e.g., DC motor, is activated. Although such string contraction
yields rotational motion of the revolute joint accordingly,
the rotational speeds of the motor and revolute joint are
not necessarily the same. This means that TSA involves
speed reduction functionality between the motor rotation
and joint angle. In addition, another advantage is power
amplification between the motor and joint torque, which
results in high torque performance, enough to lift a large
load on the robotic link by means of a relatively lower output
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motor. Consequently, twist-drive actuators have potential to
become alternative drive mechanisms in robot design and
replace conventional actuation systems in which large-size
motors are directly equipped on revolute joints. This paper
introduces a novel twist-drive actuation system on the basis
of antagonistic design of elastic round-belts. This mechanism
activates a robotic joint by means of contraction forces
induced by twisting the round-belts; therefore, it is quite
different from so-called TSA mechanisms.
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Fig. 1. A conceptual diagram of twisted string actuator (TSA).

II. RELATED WORKS

Sonoda et al. [1], [2] early started to develop a new string
transmission mechanism: Twist Drive Actuator which is able
to convert motor torque into pulling force induced by twisting
a pair of strings. This actuator mechanism enables robotic
finger design to be small and light-weight, resulting in
production of an anthropomorphic robotic hand with five fin-
gers. The authors, furthermore, demonstrated that joint angle
control and force regulation on the fingertip can be realized
by a simple closed-loop control with voltage commands:
PWM duty [3]. While the robotic fingers except the thumb
are composed of a pair of strings for only flexion movement
and of one linear spring collocated on the opposite side of
the finger, the robotic thumb has an antagonistic structure
for which another pair of strings is incorporated, resulting
in actively-controllable motion towards the opposite side [4].
However, these papers consistently claim that the Twist Drive
mechanism does not provide a constant and linear relation
between motor angle (twist rotation) and joint angle of the
robot. This claim is based on a proposed transmission model
between the pulling force and the rotational torque generated
through string twisting. In fact, the transmission model was
formulated by means of geometrical analysis, where the
strings are twisted and sterically deform with satisfying he-
lical structure. That is, the nonlinear transmission ratio, i.e.,
speed reduction ratio, between the twist rotation and the joint
angle had not been demonstrated yet by any experimental
verification.



Likewise, Wiirtz et al. [5] derived a kinetostatic transmis-
sion model, in which longitudinal feasible force in a string
helically twisted is newly defined. Palli et al. [6] carried
out force control experiments by the twisted string actuation
system, resulting in good tracking performance for sinusoidal
force reference, where the kinetostatic model and its dynamic
model proposed in the study is utilized. The paper also
indicated that a second-order sliding manifold approach
works better than the traditional PID controller. However, it
can be said that the approach for force control was required
because of the nonlinear kinetostatic model derived in these
papers. The complicated controlling approach may not be
necessary if the relationship of displacement between the
motor angle (twist rotation) and the joint angle, shown in
Fig. 1, remains linear. In addition, Palli et al. [7] designed
and developed an innovative robot hand by means of the
TSA system, which is capable of finger position control by
standard PD controller. Palli et al. [8] also achieved novel
stiffness control for an antagonistic TSA robot on the basis
of a state feedback strategy with optimal regulator algorithm,
whereas it is confined to simulation analysis. Palli et al.
[9] finally fabricated an actual light-weight finger robot,
and identified variable joint stiffness with respect to the
increase and decrease of twisting by means of enforced
vibration motion. That study also derived a reasonable model
of joint stiffness, which implies the fact that the joint
stiffness drastically decreases as the twist rotation increases.
However, since the physical stiffness is generally described
as a relationship between force and displacement, it does not
involve the information of its cross-section and volume that
are necessary for the use of elastically-deformable materials.

Consequently, this paper formulates Young’s modulus of
an elastic round-belt used for a twist-drive actuator. This
formulation is based on a constant-volume manner that is
suitable for largely-deformable elastic materials. By using
tensile force measurements of a round-belt, we clearly re-
veal that the Young’s modulus gradually decreases with an
increase in its twisting. In addition, this paper proposes a
linear relationship of transmission ratio, i.e., speed reduction
ratio, between joint angle and twist rotation (motor angle) of
the twist-drive single-joint robot. The proposed mechanism
of the robot has a couple of Antagonistically-twisted Round-
belt Actuators (ARAs), as shown in Fig. 2 [10]. Finally,
we show successful position control of the robotic joint,
and the traditional PI controller is able to easily suppress
the oscillatory motion by means of a one-sided twin-twisted
ARA robot.

III. INVERSE PROPORTION CHARACTERISTIC OF
YOUNG’S MODULUS

In addition to the Pallis’ observation [9], Popov et al.
[11], [12] also found that there exists a negatively-correlated
relation between a defined stiffness and the contraction by
string twisting, for which a self-built apparatus for tensile
test prepared. This paper, therefore, clearly reveals the char-
acteristic of negative correlation in twist deformation of the

Fig. 2. This figure shows a single link robot having antagonistically-twisted
round-belt actuators around its joint. The joint can be rotated by contraction
forces induced by twisting the round-belts.
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(a) tensile test (b) deformation model

Fig. 3. Tensile deformation of an elastic round-belt with maintaining its
constant volume.

elastic cylindrical round-belt by means of a tensile testing
machine (SHIMADZU CORP.).

As shown in Fig. 3, let [, r, and n be the natural length, the
radius, and the number of round-belts respectively, which are
all defined before tensile deformation. Assuming constant-
volume deformation of a cylindrical round-belt, the equality
between before and after deformation is described as follows:

2nmr?l = 2nw(r — 6r)2 (1 + 61). (D)

Using the above equation, the sectional area, S, after defor-

mation can be represented as

2 2nmr?l
EETE

Then, the stress when applying tensile force, F', is described
as

S = 2nm(r — or)

2

F(l+dl)
 2nmr?l ®
Finally, Young’s modulus of the elastic cylindrical round-belt
can be formulated as follows:
F(l+41)
2nmr2dl’
where the equation of strain, o = Fe = E6l/l, is used. Note
that we can compute the Young’s modulus by substituting
experimental measurements, i.e., F' and dl.
Next, in order to substitute F' and §/ into Eq. (4), we
perform tensile tests for each twist rotation from zero to
five rotations when increased by half a revolution. Fig. 4-(a)

E = “4)
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Fig. 4. Experimental results of stress-strain relation in a twisted round-belt
are shown, where the stress values are computed by substituting the tensile
force and stroke measurements into Eq. (3) in order to satisfy a constant-
volume manner during the deformation. It shows decreasing tendency of
Young’s modulus that corresponds to the slope of the stress-strain relation.

TABLE I
PARAMETER VALUES OF A ROUND-BELT.

[ parameter [ value ]
radius r 1 [mm]
natural length [ 110 [mm]
number of belt n 1

shows the experimental configuration for the test, in which a
round-belt twisted three-times is hooked up as an example.
Fig. 4-(b) shows experimental stress-strain relations when
substituting tensile force measurement F' and displacement
(stroke) 47 into Eq. (3), where other parameters are described
in Table I. In addition, Fig. 4-(b) contains only six experi-
mental data among a total of eleven data in order to facilitate
visualization as shown in Fig. 4-(c). All experimental results
with other decimal data will be shown in Fig. 5.

Applying linear approximation to the stress-strain results
shown in Fig. 4-(b), we can easily obtain the slope of the
results, corresponding to Young’s modulus of the twisted
round-belt. These results are plotted in Fig. 5, including each
result of two trials and an average value approximated as
a linear relation. It can be clearly found that the Young’s
modulus uniformly decreases as the twist rotation increases.
On the other hand, Fig. 6 shows stress-strain relations when
not using the assumption of constant-volume manner, but
using another manner based on a constant cross-section. In
this case, the slope of the stress-strain curves cannot be
approximated as linear lines, resulting in the inability of
computing the Young’s modulus.
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Fig. 5. This result shows a linear approximation model of Young’s modulus
satisfying a manner of constant-volume deformation in tensile test. The
approximated line can be represented as £ = —0.604n¢ + 23.7, where ng
means the number of twist rotation.
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Fig. 6. This result shows stress-strain curves including only three data:
0, 2.5, and 5 times twisted round-belts. In this figure, we applied not the
constant-volume deformation manner but the constant cross-section manner,
resulting in curve forms in every data.

Note that new knowledge in this section coincides with the
previous experimental observations [9], [11]. This paper has
focused on Young’s modulus, an intrinsic physical parameter
depending on individual material. Thus, we can infer that
the previous approach to derive joint stiffness unfortunately
results in derivation of nonlinear equations because the
physical quantity, i.e., stiffness, does not contain physical
meanings such as the constant-volume deformation.

IV. ROBOT EXPERIMENTS

This section shows a few experiments by means of the
ARA robot. First, we reveal a linear relationship of the
transmission ratio, i.e., speed reduction capability, between
the joint angle and the twist rotation of the robot, in
which one round-belt is connected to each actuator. Next,
we demonstrate position control of the robotic joint on
the basis of simple P and PI controllers, and clarify the
effectiveness of vibration suppression methods by means of
the additional integral controller. In this experiment, we use a
one-sided twin-twisted round-belt structure where two belts
are connected to the agonist side actuator, while one belt is
connected to the antagonist side actuator.

A. Constant Speed Control

The two-sided single-twisted round-belt structure, which
was newly developed in the previous study [10] and is shown
in Fig. 2, is able to move the joint by using round-belt
contraction induced by twisting. The twisting motion of each
round-belt can be generated by two DC motors, for which a
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Fig. 7. This illustration is a CAD design of motor stage onto which both
DC motors are mounted. The angle of axial direction of round-belt can be
varied by changing the hole position for each motor.
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Fig. 8. This experimental results show linear relationship (transmission
ratio) between the joint angle and the twist rotation of round-belt, in which
the position of both DC motors are varied on the motor stage from 3rd hole
up to 7th hole. Note that only one round-belt is connected to each motor in
this experiment.

motor driver for speed control is utilized. Since this robot
system has a voltage-controlled circuit configuration, the
motors activate by PWM duty signals. Note that in this study
we do not use current control, commonly-used for controlling
joint torque, but voltage control, capable of controlling the
motor speed easily.

In this section, we verify the linear relationship between
the twist rotation (motor angle) and the joint angle by
applying constant speed command: 6.67% duty ratio. Such
a low speed configuration is designed to neglect the link
inertia during the twisting motion. The motor stage, onto
which both motors are mounted, has seven structural holes
to which each shaft for fixing the motors is inserted, as shown
in Fig. 7. In this experiment, in order to evaluate the linear
relation in terms of the angle of longitudinal direction of
the round-belt, we change the motor position from the 3rd
hole up to the 7th hole. Fig. 8 shows a clear linear relation
between the joint angle and the twist rotation, in which the
DC motorl that corresponds to the agonist side actuator on
the right hand side of Fig. 2 is controlled by the constant
speed command. The other motor (antagonist side) remains
untwisted. We can see good linearity in every case of the
motor position. On the other hand, there exists no mention
of achieving a linear relationship between the joint and twist
angle in other studies [13], [14], referring to the relationship
as transmission ratio. In addition, the nonlinear quality of the
transmission ratio is found not only in experiments but also
theoretical analysis based on a proposed mathematical model
[15]. Eventually, we can conclude that the antagonistically-
arranged TSA robots have nonlinear transmission ratio in

(a) overhead view

AN

(b) twin-twisted round-belts

Fig. 9. This figures show one-sided twin-twisted round-belt structure, that
is, this ARA robot has three round-belts in which two belts are connected
to agonist side and another belt is connected to antagonist side. The DC
motors on the motor stage are inserted into 3rd hole position.

terms of the joint angle and the twist rotation in contrast to
ARA robots composed of elastically-deformable materials.
Again observing the results of Fig. 8, we can see a dif-
ferent slope with respect to each motor position. This means
that the transmission ratio, i.e., speed reduction capability
through the round-belts, varies arbitrarily according to the
motor position, which can be changed manually by users.

B. Position Control

As described in detail in the previous contribution [10], the
round-belt can be replaced as many times as needed due to
the transposable structure. Furthermore, it is also possible to
add additional round-belts into either location. In this section,
we demonstrate stable position control of the robotic link by
means of twin-twisted configuration, for which one round-
belt is added to the agonist side, as shown in Fig. 9. The
control algorithm is a traditional P controller. Letting 6 be
the joint angle of the robot, then the PWM duty command
is represented as follows:

uqg = —Kp(0 — 04), (5)

where the initial joint angle is 19° due to the disproportionate
belt configuration.

Fig. 10 shows experimental results, where the dotted line
represents a result in the case of a single belt on both sides.
In Fig. 10-(a), the vertical axis is the relative value from the
initial angle: 19°. It is clearly seen that the time response
of the joint angle in the case of twin belts is much faster
than the other configuration. On the other hand, relatively
large vibration occurs in both cases. This comes from the
fact that the effective stiffness around the joint is not small
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Fig. 10. This experimental results show large vibration of the robotic link.
A traditional P control is performed: desired step reference and proportional
gain are set to be 94 = 15° and Ky, = 1200 in the former, and be
64 = 10° and Kp, = 1600 in the latter.

enough to prevent the vibration that generates due to the
relatively large inertia of the link. While at the same time,
we can find that the magnitude of the vibration becomes
comparatively small in the twin belt configuration compared
to the single belt mechanism. We can obviously explain
the reason such that large joint stiffness in the twin belts
contributes to the vibration suppression. Fig. 10-(b) indicates
stable non-oscillatory responses in terms of the twist rotation
equal to the motor angle. As a result, we can know that
the vibrating motion of the link transmits to the longitudinal
direction of each belt, but does not influence the twisting
motion controlled by the motors. Finally, the transmission
ratio between the joint angle and the twist rotation can be
computed from the results as the following equations:

10°
s = ——— = 4.604 x 1073, 6
' = 6.033 x 360° x ©)
- 11.093 x 1073 (7)
= 376 x 3600 ’

where the subscripts stand for the single belt and the twin
belts respectively. It can be seen that the transmission ratio
of the twin belt configuration is larger by approximately
2.4 times than the single belt configuration. At the same
time, we can know that there exists an extremely large
effect of speed reduction in the ARA system. Such a high
resolution of joint angle, therefore, has an advantage to
design a compact robotic finger capable of soft grasps and
dexterous manipulation.

C. Controller Redesign for Vibration Suppression

As shown in the previous section, vibrating motion of the
robotic link occurs when applying the traditional P controller.
Therefore, in this section we consider a solution to improve
the oscillatory response. Let us again observe the time
response shown in Fig. 10. There we find that the trajectory
of the twist rotation linearly increases in both cases, while
the trajectory of the joint angle behaves like a second-order
system as the angle rises. This linear increase corresponds
to constant-speed output from an activating motor. It comes
from two facts: that the PWM duty (percentile) remains
constant due to its saturation as shown in Fig. 11-(a), and
that symmetrical rotating motion by the motor arises in terms
of a combination of the round-belt and the shaft coupling
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Fig. 11. The left hand side figure shows time responses of the PWM duty

ratio in the case of vibration behavior shown in Fig. 10; the right hand side
figure shows an improved duty ratio in the twin belts configuration.
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Fig. 12. These figures show improved responses of the joint angle and the
twist rotation, in which a simple PI controller is utilized on the condition
of K = 700, K; = 0.12.

fixed to the motor. In addition, we can find from Fig. 10 and
Fig. 11-(a) that the vibration occurs when the duty ratio is
just reversed. Therefore, we have to redesign the controller
while regarding the response of PWM duty. In this paper, we
choose a simple conventional controlling method to prevent
differential noise, and then PI controller is utilized as follows:

ug = —K,(0 —09) - K; /(9 —0%)dt. (8)

Note that this control algorithm additionally contains an
upper limit of the duty ratio at 50%. Fig. 11-(b) shows a
smooth response of duty ratio, in which any reverse motion
does not appear and the saturation limit becomes 50%. The
improved responses of the joint angle and the twist rotation in
the case of twin belt configuration are shown in Fig. 12. We
can readily see that the oscillatory behavior of the joint angle
is obviously modified, while the time response becomes slow.

D. Performance in 7th Hole Configuration

In this section, we finally verify the control performance
of the ARA robot with one-sided twin-twisted round-belt
structure when choosing the seventh hole for the motor, as
shown in Fig. 7 and Fig. 13. Note that the angle, «, to
the longitudinal direction of the round-belt increases due to
the seventh hole insertion. Let us perform the same position
control task for the robot as well as Fig. 10, and utilize the
P controller with the same gain in order to compare how the
oscillatory motion changes.

Fig. 14 shows a comparison result between the different
motor positions, and we can know that the magnitude of
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Fig. 13. The ARA robot with one-sided twin-twisted structure for which
both motors are inserted into 7th holes.
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Fig. 14. These figures show comparison results, in which parameters are
set to be 09 = 15° and K, = 1200 as well as Fig. 10. The result in 3rd

hole position shown in Fig. 10-(a) is again depicted as a dotted line in this
figure.

vibration becomes appropriately smaller than that of third
position, as shown in Fig. 14-(b). Fig. 14-(c) furthermore
shows almost equal responses in spite of different hole
positions. As a result, these experimental results indicate
that the variation of both vibrations depends only on the
inclined angle «. Consequently, we can conclude that the
joint stiffness of the proposed ARA robot increases according
to the increase of the inclined angle .

In addition, steady state error appears in Fig. 14-(b),
and it extends in response to the seventh hole position.
Thus, an additional integral controller should be added to
eliminate the error, if we make it a priority to maintain high-
accuracy positioning control. As a result, this modification
is also useful for suppression of oscillatory motion as well
as Fig. 12.

V. CONCLUDING REMARKS

This paper had newly formulated a Young’s modulus
model of an elastically-deformable small-diameter round-
belt that is used in the proposed ARA robot. This model
indicates a negative linear relationship against the number

of twist rotations. Furthermore, this paper revealed a linear
relationship of transmission ratio between the joint angle
of the robot and twist rotation of the round-belt. Finally,
we showed successful position control of the robotic joint,
and found that the traditional PI controller is able to easily
suppress the oscillatory motion in one-sided twin-twisted
ARA robot.

In future work, we will try to perform contraction force
control in the longitudinal direction of a twisted round-belt,
and verify dynamic transient responses of twin/triple-twisted
ARA mechanisms by means of sinusoidal command signals.
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Antagonistically-twisted Elastic Round-belt Actuation Systems

Takahiro Inoué and Shinichi Hirad

Abstract—In recent researches relating to robotic fingers, a
novel power transmission mechanism had been designed, and
developed as Twist-drive Actuators or Twisted String Actuator
systems (TSA). These actuation structures, state of the art,
include compact designs, light-weight mechanical structures,
inherent compliance, and variable gearing, resulting in the N
fabrication of anthropomorphic robotic hands. However, those
studies mentioned position control of the joint, and focused on
the control performance of the pulling forces of a twisted string.
This paper, therefore, introduces a novel joint mechanism . . .
compgsepd of an Antagonistically-twisted ROLJJnd-be|t Actuator (a) overhead view (b) twin-twisted round-belts
(ARA), which is able to make rotating motion by means of Fig. 1. This figures show one-sided twin-twisted round-belt structure, that
contraction forces induced by twisting small-diameter elastic is, this ARA robot has three round-belts in which two belts are connected
round-belts. In experiments, we newly develop a twin/triple- to agonist side and another belt is connected to antagonist side. The DC
twisted round-belt structure for the agonist side actuator, thus ~motors on the motor stage are inserted into 3rd hole position.

enhancing the contact forces effectively.
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T 7
l. INTRODUCTION ol B e A
A novel actuation system based on a twisted string actuator - I e 2°]
(TSA), which is easily able to meet high output-weight rati@s [ | / * s ey é; winbels |
and force transmission efficiency, has been developed[1], [@]j ] I |
[3]. One of the advantages of TSA is effective motional ,| | . 12,1 i
conversion on the drive-line of robot systems. Although sucho L= ‘ = , o w w - )

. X . . . 04 05 1 1
string contraction yields rotational motion of the revolute time [s] time [s]
joint accordingly, rotational speed of the motor and revolute  (a) timeresponse of (b) time response op;
joint are n_Ot necessarily the Same as On_e anqther' This me - 2. This experimental results show large vibration of the robotic link. A
that TSA involves speed reduction functionality between thgaditional P control is performed: desired step reference and proportional
motor rotation and joint angle. In addition, another advantagin are set to b&! = 15° and K, = 1200 in the former, and be
; PP P §4 = 10° and K}, = 1600 in the latter.
is power amplification between the motor and joint torque;
which results in torque performance high enough to lift
Egﬁrlgsgsuf%gmesemggzg “?skt 3%\:2?:?5agr;]e;?lgve:3é;?wadd additional round-belts into either location. In this section,

otential 'E)o 5ecomeqalterngg\,t' e drive mechan'smsg'n robWe demonstrate stable position control of the robotic link by
potent v Ve n : : Means of twin-twisted configuration, for which one round-
design and replace conventional actuation systems on wh|8

| DC motor is directl inoed lute ioint It is added to the agonist side, as shown in Fig. 1. The
alarge motoris directly equipped on a TevolUte JOINL gy algorithm is a traditional P controller. Lettirtgbe

This paper introduces a novel joint mechanism composgf, i
L . e joint angle of the robot, then the PWM duty command
of an Antagonistically-twisted Round-belt Actuator (ARA), is rerresentged as follows: y
i :

which is able to rotate by means of contraction force
induced by twisting small-diameter elastic round-belts. A ug = —K,(0 — 09, Q)
noteworthy point n this paper is that the ARA robot Swhere the initial joint angle is T9due to the disproportionate
extremely well-suited for contact force control, which is ) .
exerted on the tip of the single joint robot belt configuration.
’ Fig. 2 shows experimental results, where the dotted line

II. POSITION CONTROL represents a result in the case of a single belt on both sides.

n Fig. 2-(a), the vertical axis is the relative value from the

As described in detail in the previous contribution [4], therEéial angle: 19. It is clearly seen that the time response

round-belt can be replaced as many times as needed dué

the transposable structure. Furthermore, it is also possible the joint angle in the case of twin belts is much faster

than the other configuration. On the other hand, relatively
This work was supported in part by JSPS KAKENHI (15H02230) andarge vibration occurs in both cases. This comes from the
JKA (27-146, 28-110). _ _ fact that the effective stiffness around the joint is not small
LT. Inoue is with Faculty of Dept. Human Information Engineering, . .
enough to prevent the vibration that generates due to the

Okayama Prefectural Univ., Japdnoue@ss.oka-pu.ac.jp ! i ! ' . .
23, Hirai is with Faculty of Dept. Robotics, Ritsumeikan Univ. relatively large inertia of the link. While at the same time,



we canfind that the magnitude of the vibration becomes
comparatively small in the twin belt configuration compared
to the single belt mechanism. We can obviously explain
the reason such that large joint stiffness in the twin belts
contributes to the vibration suppression. Fig. 2-(b) indicates
stable non-oscillatory responses in terms of the twist rotation
equal to the motor angle. As a result, we can know that
the vibrating motion of the link transmits to the longitudinal

direction of each belt, but does not influence the twisting
motion controlled by the motors. Finally, the transmission
ratio between the joint angle and the twist rotation can be
computed from the results as the following equations:

B 10°
"~ 6.033 x 360°
B 15°
"~ 3.756 x 360°

wherethe subscripts stand for the single belt and the twin (b) diagonalview

belts respectively. It can be seen that the transmission rafi@. 3. These figures show an ASA robot configuration, including a

of the twin belt configuration is Iarger by approxirrmlte'ycross-shaped link (prototype 2) and twin-belts structure in the agonist side
. . ; : actuator. This robot is able to generate large rotational torque for the joint

2.4 times than the single belt configuration. At the samg@ comparison to the prototype 1 used in the previous study [4].

time, we can know that there exists an extremely large, .

robot link

(a) topview

s =4.604 x 1073, )

0 =11.093 x 1073, )

T T T 5 T T
effect of speed reduction in the ARA system. Such a high § <——= force control 458 v
resolution of joint angle, therefore, has an advantage Ez’gé ’gsgjgé ]
design a compact robotic finger capable of soft grasps agds- &2 15 sr 82 foree control .
dexterous manipulation. 5, g20 1
g Pl-c. <— P-c B15F Yo
1. CONTACT FORCE CONTROL BY So5f 12 1 {P,_c T 1

ANTAGONISTIC TWIST-DRIVE ROBOT [ VNN S R N o I
. . . 0o 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

We introduced a novel joint mechanism composed of an time [s] time [s]
Antagonistically-twisted Round-belt Actuator (ARA), which (a) contactforce F' (b) twist rotationys, 2

is able to rotate a joint by means of contraction forcegig 4. These figures show experimental results of contact force control

induced by twisting small-diameter elastic round-belts [4]before which a twist rotation control is performed for 2 s. A PI controller

The round-belts are twisted by DC motors placed on a motdyr motor angle is adopted while a simple P controller is used in the period
. . of contact force control.

stage that is activated by a step motor. In that paper, we

revealed that the antagonistic twist-drive actuator mechanism

has a speed reduction capability to largely decrease t@entroller, Eq. (4), for each twist rotatiom, ande,, is used

velocity of joint movement. In this paper, we introduce &g eliminate steady-state errors throughout this experiment.
second prototype of the ARA robot shown in Fig. 3, which

is capable of enhancing rotational torque of the joint. This ug; = —Kp(pi — ¢f) — K; /(% — pf)dt, 4
prototype is redesigned to be a cross-shaped link so that both

round-belts become parallel to each other. As a result, contaherep; is the twist rotation (rev.) of thé-th DC motor.
force on the tip of the robot, which is exerted onto a wall, Fig. 4 shows an experimental result of force feedback

is enlarged in comparison to the first prototype [4]. control by activating the agonist twin-belts, where the desired
reference is chosen such & = 2 N (2s< ¢ <4s) and
A. Step Response F =1 N (4s< t). Note that a very simple P controller for

First, we conduct contact force experiments, in which gontact force control is chosen after the preliminary motion,
10 N load-cell is attached to be in contact with the tip ofs described in the following equation:
the robot. In addition, @2 round-belt is added only to the - d
agonist side actuator. This robot configuration, therefore, is tar = _K‘{(F — £, ©)
referred to a®ne-sided twin-twistedtructure in this study. whereas the antagonist single-belt maintains twist rotation
In this section, the input command is set to be a step functionpntrol expressed in Eq. (4). We can clearly find a good
and be added into the force feedback loop at 2 s. In otheerformance with no errors in both desired values, and know
words, we make the robot perform a preliminary motiorthat stable force trajectory can be achieved without any
such as 1-twist rotation of both belts before starting thevershoot even in the case of the simple P controller. On
contact force experiments. This 2 s motion is necessatiie other hand, the time response &t = 2 N tends to
for preventing looseness of the round-belts, in which a Rde slightly slower than that &9 = 1 N. This result comes



O s | deired °2 IV. CONCLUDING REMARKS
z’ /}/""\ /'“\\ g“f’ ! This paper introduced a novel joint mechanism composed
815 200/ of an antagonistically-twisted round-belt actuator, which is
5, \ g25 / able to make rotating motion by means of contraction forces
£ backward Bi5l © induced by twisting small-diameter elastically-deformable
S05 Bl 2 i
J os round-belts. We performed several fundamental experiments
0 ! 0 ! to clarify the physical performance of the round-belts, in
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50 . . . .. . .
time [s] time fsl which static and dynamic twisting motions are applied to
(a) contactforce (b) twist rotation single/multiple round-belts. As a result, we showed the

Fig. 5. These figures show contact force measurements and trajectorigy,s'u:"reSIS property and Stress. relaxation phenomenon of
where the time period of sinusoidal force reference®'is- 87 s.. In this  the system in terms of contraction forces regardless of the

experiments, a simple P controller for force feedback control is applied taumber of round-belts. Next, this study demonstrated con-

one-sided twin-twisted configuration of ARA robot. A set of different gains - .
in forward and backward twisting motions is adopted to obtain most gooH’aCtIOn force control and contact force control, respectlvely,

performances. in which we designed a one-sided twin-twisted round-belt
configuration in order to obtain more large force measure-
ments. We revealed from the results that a traditional simple
from the same fact with the case of contraction force controproportional controller is stable enough for force feedback
that reactive moment by twisting continues to increase durirgjrategy to achieve a great success with no visible errors. In
the increase of force reference. In that controlling period, theddition, we exhibited that the negative physical properties
twisting of round-belts raises not only the rotational stiffnessf round-belts do not influence the control performance of
of the belts but also their rotational viscosity, resulting irfforce feedback systems.
an effective speed reduction for the motor rotation shown
in Fig. 4-(b). In addition, the reason for the fast backward
response of the force value alter 4 Is that both drections? (. Pader, K Hesisveh, 2 T oo, el i
of the reactive moment and the backward motion coincide. Wo”fshop Advanced Moi'ign Control, pp.337-342, 2010, .
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Force Control on Antagonistic Twist-drive Actuator Robot

Takahiro Inoue!, Ryuichi Miyata2, and Shinichi Hirai3

Abstract— In recent researches relating to robotic fingers, a
novel power transmission mechanism had been designed, and
developed as Twist-drive Actuators or Twisted String Actuator
systems (TSA). These actuation structures, state of the art,
include compact designs, light-weight mechanical structures,
inherent compliance, and variable gearing, resulting in the
fabrication of anthropomorphic robotic hands. However, those
studies mentioned position control of the joint, and focused on
the control performance of the pulling forces of a twisted string.
This paper, therefore, introduces a novel joint mechanism
composed of an Antagonistically-twisted Round-belt Actuator
(ARA), which is able to make rotating motion by means of
contraction forces induced by twisting small-diameter elastic
round-belts. A noteworthy point in this paper is that the ARA
robot is extremely well-suited for contact force control, which is
exerted on the tip of the single joint robot. First, we demonstrate
the existence of hysteresis characteristics of static contraction
forces induced by the round-belt twisting, in which three belts
are simultaneously twisted at constant low-speed. In addition,
there exists a stress relaxation phenomenon when strongly
twisting the elastic round-belts. We reveal that such sorts of
discontinuous and nonlinear properties do not influence control
performance in either the contraction force on the belts or
contact force on the tip of the robot. Finally, this paper clearly
shows stable and accurate tracking performance of the contact
force of the ARA robot. In these experiments, we newly develop
a twin/triple-twisted round-belt structure for the agonist side
actuator, thus enhancing the contact forces effectively.

I. INTRODUCTION

In recent years, there has been a lot of interest in wearable
robots, rehabilitation robots, and power assist robots for
daily living for both healthy people and people with disabil-
ities. Such practical applications particularly require robotics
which are light-weight, low cost, and compact in design and
mechanisms. Natural and quick mechanical response for the
manipulating intentions of users is also indispensable for
practical usage.

To this end, a novel actuation system based on a twisted
string actuator (TSA), which is easily able to meet high
output-weight ratio and force transmission efficiency, has
been developed. One of the advantages of TSA is effective
motional conversion on the drive-line of robot systems. That
is, as illustrated in Fig. 1, translational motion on the outside
diameter of pulleys due to contraction can be generated by
the twisting a string, for which a rotational actuator, e.g., DC

This work was supported in part by JSPS KAKENHI (15H02230) and
JKA (27-146, 28-110).
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\ twisted string pulley
DC motor
revolute
,/ joint

twisted string

Fig. 1. A conceptual diagram of Twisted String Actuators (TSA) and
Twist-drive Actuation systems.

motor, is activated. Although such string contraction yields
rotational motion of the revolute joint accordingly, rotational
speed of the motor and revolute joint are not necessarily
the same as one another. This means that TSA involves
speed reduction functionality between the motor rotation
and joint angle. In addition, another advantage is power
amplification between the motor and joint torque, which
results in torque performance high enough to lift large loads
on the robotic link by means of relatively low motor output.
Consequently, twist-drive actuators have great potential to
become alternative drive mechanisms in robot design and
replace conventional actuation systems on which a large DC
motor is directly equipped on a revolute joint.

This paper introduces a novel joint mechanism composed
of an Antagonistically-twisted Round-belt Actuator (ARA),
which is able to rotate by means of contraction forces
induced by twisting small-diameter elastic round-belts. A
noteworthy point in this paper is that the ARA robot is
extremely well-suited for contact force control, which is
exerted on the tip of the single joint robot.

Il. RELATED WORKS

Sonoda et al. [1], [2] previously started to develop a new
string transmission mechanism, Twist Drive Actuator, which
is able to convert motor torque into pulling force induced by
twisting a pair of strings. This actuator mechanism enables
robotic finger design to be small and light-weight, resulting
in production of an anthropomorphic robotic hand with
five fingers. The authors, furthermore, demonstrated that
joint angle control and force regulation on the fingertip can
be realized by a simple closed-loop control with voltage
commands: PWM duty [3]. While the robotic fingers except
the thumb are composed of a pair of strings for only flexion
movement and of one linear spring collocated on the opposite
side of the finger, the robotic thumb has an antagonistic
structure for which another pair of strings is incorporated,
resulting in actively-controllable motion towards the opposite
side [4]. However, these papers consistently claim that the
Twist Drive mechanism does not provide constant and linear
relation between motor angle (twist rotation) and joint angle
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of the robot. This claim is based on a proposed transmission
model between the pulling force and the rotational torque
generated through string twisting. In fact, the transmission
model was formulated by means of geometrical analysis,
where the strings are twisted and sterically deform with sat-
isfying helical structure. That is, the nonlinear transmission
ratio, i.e., speed reduction ratio, between the twist rotation
and the joint angle has not been demonstrated yet by any
experimental verification.

Gaponov et al. [5] proposed a mathematical model of a
twisted string transmission system, and performed funda-
mental experiments in terms of position and velocity control
by a single twisted string to which a heavy load is placed.
In addition, the authors developed an exoskeletal device for
a human assistive robot by means of the TSA mechanism
[6], [7]- These studies focus only on the position control of
the human/robot joint angle for use in haptics, teleoperation,
and rehabilitation applications. However, it is important for
assistive robot motions to monitor the force level required
for sufficient adjunctive power by users. Shin et al. [8], [9]
proposed a dual-mode transmission mechanism for a robotic
finger in order to independently achieve large grasping force
and high speed motion. While the structure enables the
fingertip force to reach up to approx. 10 N, the control
performance of the force is not mentioned. Fukui et al. [10]
introduced a universal robot hand having five fingers, and
tried to exert contact force control by means of the robotic
thumb. The response of the fingertip force cannot, however,
follow desired given trajectory such as step functions.

This paper, therefore, introduces a novel joint mechanism
composed of an antagonistically-twisted round-belt actuator,
which is able to make rotating motion by means of contrac-
tion forces induced by twisting small-diameter elastic round-
belts. First, we demonstrate the existence of hysteresis char-
acteristics of static contraction forces induced by the round-
belt twisting, in which three belts are simultaneously twisted
with constant low-speed. In addition, there exists a stress
relaxation phenomenon when strongly twisting the elastic
round-belts. We reveal that such sorts of discontinuous and
nonlinear properties do not influence control performance
in the case, of contraction forces on the belts or in contact
forces on the tip of the robot. Finally, this paper clearly shows
stable and accurate tracking performance of contact forces
of the ARA robot. In these experiments, we newly develop
a twin/triple-twisted round-belt structure for the agonist side
actuator, thus enhancing the contact forces effectively.

I1l. STATIC AND DYNAMIC PERFORMANCES OF
CONTRACTION FORCES

The elastic round-belts used for the twist-drive actuator
are made of rigid polyurethane foam, and are commercially
available. Usually, one can use these belts for a torque trans-
mission element, whereas we utilize them in our study for an
actuator component by twisting them by motors. The twisted
round-belts, therefore, may become extended and result in
plastic deformation. Consequently, we performed several
fundamental experiments to clarify the physical performance

(a) twisting test by step motor
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(c) ¢2 single belt (d) ¢3 single belt

Fig. 2. These results include contraction force measurements obtained by
means of a step motor, in which the twist rotation speed is set to be 1
rev./s. in order to consider static force characteristics of the belts. In this
experiments, triple ¢2-round-belts are simultaneously twisted in (b), single
¢2-round-belt is twisted in (c), and single ¢3-round-belt is twisted in (d).

of the round-belts, in which static and dynamic twisting
motions are applied to single/multiple round-belts. Note that
the round-belts used in this study have extremely small
diameters, e.g., 2mm or 3mm, therefore we use symbols such
as ¢2 and ¢3 for short.

A. Hysteresis and Stress Relaxation Phenomena

In the previous study [11], we showed a relatively large
hysteresis phenomenon, where a ¢2-single belt was twisted
by a simple twisting apparatus. The maximum deviation in
the hysteresis curve was approximately 60%. In order to
clarify the relationship between the maximum deviation and
the number of round-belts, we prepare a triple round-belt
configuration, and measure the contraction force induced by
twisting as shown in Fig. 2-(a). Fig. 2-(b) shows an obvious
hysteresis curve, in which the step motor operates with a
constant speed command of 1 rev./s to meet a static loading
condition. It was clearly found that the maximum deviation
in the curve becomes approximately 41%, whereas it is
smaller than the deviation in the case of a single belt [11].
Fig. 2-(c) and (d) show contraction force measurements when
holding the twisting motion at corresponding conditions: 4,
8, and 10 twist rotations, where the rotation speed is equal
to 1 rev./s and the number of belts is switched to a single
configuration in cases of ¢2 and ¢3 diameters. We can
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(a) initial state
Fig. 3.

(b) twisted single belt
Apparatus for twisting test by DC motor.

see that each contraction force largely decreases and finally
converges to a certain value. These results come from the
fact that a stress relaxation phenomenon occurs after holding
the twisting motion. That is, such a force declination is an
intrinsic characteristic of elastomer materials, and depends
on the polyurethane material used for the round-belts. We
can therefore infer that the hysteresis curve is derived from
the stress relaxation phenomenon.

In addition, as seen in Fig. 2-(c) and (d), we can know that
there exists extremely high repeatability of force trajectory
during the twisting period. Thus, the twist-drive actuation
system capable of changing either/both the diameter and the
number of belts has a great deal of potential for use in robot
actuators because of the flexibility of its design.

B. Control of Contraction Force

As detailed in the previous section, contraction force in-
duced by twisting single/multiple round-belts appears while
fixing both sides of the belts. In this section, we conduct
a feedback control of contraction forces in order to clarify
the dynamic performance of a twisted round-belt. While the
same apparatus is utilized in this experiment, the driving
motor for twisting is replaced with a DC motor shown in
Fig. 3, and the load cell is connected to a dynamic strain
measuring instrument, i.e., 1 kHz frequency response, in
contrast to the static experiments. The desired reference for
feedback control is a step function that varies from 2 N up
to 5 N at intervals of 2 sec. The hardware construction is
based on a Renesas micro-computer, and the sampling time
for its controller is 2 msec.

Fig. 4-(a) shows experimental results, indicating that a
traditional P controller works well to meet a successful
trajectory. On the other hand, steady-state deviations and
oscillatory behavior appear slightly during the increasing
period of the desired reference as seen in Fig. 4-(a). The
reason is that the reactive moment generated by the increase
of twist rotation interferes slightly with motor revolution, as
illustrated in Fig. 5. A twisted round-belt changes its shape
in three dimensional configuration, resulting in generation
of three force components, i.e., contraction force F. and
other forces F,,, F,. The latter two forces work on a
cross-sectional surface that deforms into an ellipsoidal shape
during the twisting. While the force component F does not
act as a reactive moment against the motor revolution, 2F,,r
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Fig. 4. These experimental results show time responses of contraction force
and twist rotation. The upper figures are results in the case of applying P
controller throughout the experimental task; the lower figures are those in
the case of applying PI controller during the increasing period of desired
reference FJ.

F Fc
Fm
Fm Fs r
Fs ellipsoidal
Fm shape

(a) force components

Fig. 5. This illustration shows force components induced by twisting a
round-belt. An elastic force towards axial direction of a belt is decomposed
into three components: contraction force Ft and other forces Fi,, Fs.

(b) cross-sectional surface

works as the moment that reduces the net torque of the
DC motor. That is, the force component F,,, causes torque
disturbance for the force feedback control system, which can
be explained in detail as follows:

(Im + In) @ + cop + kp + 2Fy (o)
:7KP(F0*F3)' (1)

The left hand side of the above equation describes the
dynamics of the twist-drive actuator with a twisted round-
belt, where I, and I, stand for the moment of inertia of
the motor and the belt, and ¢ is the twist rotation that
is equal to motor revolution. In the case of P controller,
favorable steady-state convergence of the contraction force
requires some sort of additional control input capable of
eliminating residual moment described in the third and fourth
terms of Eq. (1). Thus, by applying an additional integral
controller into the closed-loop system, a relationship of static
equilibrium in the steady-state is satisfied as follows:

b + 2F(0)r = — I / (F. — F%) at. @)
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after before

Fig. 6. This figure shows plastic deformation of a round-belt after static and
dynamic experiments. This elastic round-belt is made of rigid polyurethane
foam and be commercially available.

The improved response is plotted in Fig. 4-(c).

Next, we consider the time response of the twist rotation
depicted in Fig. 4-(b) and (d). It is clearly found that each
trajectory gradually increases at every interval despite the
stable convergence of the contraction forces. This comes
from the fact that stress relaxation occurs even in the 2 sec
interval, resulting in downward declination of the contraction
forces. On the other hand, the trajectories of the twist rotation
during the decreasing period of the desired reference are all
maintained almost constant in each steady state. This result
implies that the stress relaxation does not appear largely in
the decreasing period, and as a result, the simple P controller
is enough to control the contraction forces without large
errors.

In Fig. 4, we can obtain another insight that the stress
relaxation phenomenon can be seen even over a long time
period. We can notice this from the fact that the time re-
sponses of the twist rotation are not symmetrical with respect
to the vertical axis shown in Fig. 4-(b) and (d), whereas
the responses of the contraction forces indicate an obvious
symmetric property between the increasing and decreasing
periods. This result implies that the stress relaxation persists
for a long time even in the case of dynamic force control
in addition to the static experiment shown in the previous
section.

Eventually, a twisted round-belt deformed plastically after
the static and dynamic experiments by means of a twist-drive
actuator, as shown in Fig. 6. Since the round-belt has ¢2-
diameter and 260mm circumferential length, in fact its shape
did not change greatly. On the other hand, a round-belt of
600mm deformed significantly, which was tested in another
experiment that will be mentioned in another paper. We can,
therefore, conclude that the longer the round-belt length, the
more noticeable the plastic deformation of the belt becomes.

IV. CONTACT FORCE CONTROL BY
ANTAGONISTIC TWIST-DRIVE ROBOT

We introduced a novel joint mechanism composed of an
Antagonistically-twisted Round-belt Actuator (ARA), which
is able to rotate a joint by means of contraction forces
induced by twisting small-diameter elastic round-belts [11].
The round-belts are twisted by DC motors placed on a motor
stage that is activated by a step motor. In that paper, we
revealed that the antagonistic twist-drive actuator mechanism
has a speed reduction capability to largely decrease the
velocity of joint movement. In this paper, we introduce a

robot link

(a) top view

(b) diagonal view

Fig. 7. These figures show an ASA robot configuration, including a
cross-shaped link (prototype 2) and twin-belts structure in the agonist side
actuator. This robot is able to generate large rotational torque for the joint
in comparison to the prototype 1 used in the previous study [11].

second prototype of the ARA robot shown in Fig. 7, which
is capable of enhancing rotational torque of the joint. This
prototype is redesigned to be a cross-shaped link so that both
round-belts become parallel to each other. As a result, contact
force on the tip of the robot, which is exerted onto a wall,
is enlarged in comparison to the first prototype [11].

A. Sep Response

First, we conduct contact force experiments, in which a
10 N load-cell is attached to be in contact with the tip of
the robot. In addition, a ¢2 round-belt is added only to the
agonist side actuator. This robot configuration, therefore, is
referred to as one-sided twin-twisted structure in this study.
In this section, the input command is set to be a step function,
and be added into the force feedback loop at 2 sec. In other
words, we make the robot perform a preliminary motion
such as 1-twist rotation of both belts before starting the
contact force experiments. This 2 sec motion is necessary
for preventing looseness of the round-belts, in which a PI
controller, Eq. (3), for each twist rotation ¢, and o, is used
to eliminate steady-state errors throughout this experiment.

wai = —Kpii — o) — K / (pi—ehdt, @)

where ¢, is the twist rotation (rev.) of the i-th DC motor.

Fig. 8 shows an experimental result of force feedback
control by activating the agonist twin-belts, where the desired
reference is chosen such as F = 2 N (2s< ¢t <4s) and
F =1 N (4s< t). Note that a very simple P controller for
contact force control is chosen after the preliminary motion,
as described in the following equation:

uqr = —KJ(F — F9), (4)

whereas the antagonist single-belt maintains twist rotation
control expressed in Eq. (3). We can clearly find a good
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Fig. 8. These figures show experimental results of contact force control

before which a twist rotation control is performed for 2 seconds. This pre-
liminary motion of both round-belts is necessary to eliminate the looseness
of the belts, in which a PI controller for motor angle is adopted while a
simple P controller is used in the period of contact force control.

performance with no errors in both desired values, and know
that stable force trajectory can be achieved without any
overshoot even in the case of the simple P controller. On
the other hand, the time response at F4 = 2 N tends to
be slightly slower than that at 4 = 1 N. This result comes
from the same fact with the case of contraction force control,
that reactive moment by twisting continues to increase during
the increase of force reference. In that controlling period, the
twisting of round-belts raises not only the rotational stiffness
of the belts but also their rotational viscosity, resulting in
an effective speed reduction for the motor rotation shown
in Fig. 8-(b). In addition, the reason for the fast backward
response of the force value after 4 seconds is that both
directions of the reactive moment and the backward motion
coincide.

B. Frequency Response

To date, there have not been many preferable results
in terms of contact force control on the tip of robotic
fingers, especially we cannot find any good performance for
continuously-variable force control in terms of sinusoidal
signal references. This section, therefore, shows several
frequency responses for sinusoidal input signals, in which
the time period is set to be 87 sec and 7 sec, and the force
reference moves from 0.5 N up to 2 N as in the following
equation:

FA(t) = 0.75 sin(wt — g) +1.25, (w=1/m,1/87). (5)

Note that this experiment uses the one-sided twin-twisted
ARA robot shown in Fig. 7, and utilizes the conventional P
controller described in Eq. (4). In addition, the proportional
gains in all cases are expressed in Table I, and we designed
these gains to differentiate between the cases of forward and
backward directions of the desired force reference.

Fig. 9 shows the experimental results of contact force
control for different sinusoidal references for which most fast
and slow periods such as 7 sec and 8 sec are chosen in order
to demonstrate basic performance of the robot. We can see
a good tracking capability despite the use of an extremely
simple and traditional P controller as shown in Fig. 9-(a),
whereas small deviations appear in the backward trajectory

TABLE |
GAIN PARAMETERS, Kg, FOR FREQUENCY RESPONSES.

[ direction [[ twin, = [ twin, 8 [[ triple, 47 |
forward 5500 5000 5000
backward 1500 400 600

at the points of approx. 23 sec and 47 sec. As a result,
we can conclude that the hysteresis property and the stress
relaxation phenomenon, which are intrinsic characteristics
in elastically-deformable materials, do not affect control
performance of force feedback systems in antagonistically-
twisted round-belt actuators.

Next, let us observe another response in the case of
the fastest desired-reference of the contact force. Fig. 9-
(b) exhibits accurate tracking performance in which noisy
behavior appears less than the response in the case of
T = 8m sec. Such a fast tracking motion had never been
seen in related studies so far. While a similar finger robot
based on a TSA mechanism achieved good tracking results
for a triangular waveform of force reference, the periodic
function is limited up to 27 sec. [3]. In addition, Palli
et al. [12] explained that the PID control strategy is less
robust with respect to measurement noise during continuous
setpoint variations, resulting in applying the sliding mani-
fold controller proposed in that paper. However, as shown
in this section, successful tracking for sinusoidal desired
reference was able to be realized even in the use of most
simple P controller. Furthermore, Park et al. [13] developed
impedance control and force control by means of a TSA
for use in tensegrity robots. Although the force trajectory
successfully followed a sine function with the presence of
external disturbance, this experimental task is restricted to
string pulling-force control by twisted contraction, as in the
previous studies [12], [14], [15].

Fig. 10 shows time trajectories of the twist rotation which
were obtained when controlling the contact forces as shown
in Fig. 9. We know from Fig. 10-(a) that the noise of force
measurement does not influence the trajectory performance
of the twist rotation, ;. This comes from the fact that
the viscoelasticity of twisted/untwisted round-belts acts as
a low-pass filter to eliminate the measuring noise on the
contact point. For the same reason, a derivative controller
is not necessary for twist control with viscoelastic round-
belts. Finally, we show an operation example of the one-sided
triple-twisted configuration in Fig. 9-(c) and Fig. 10-(c). In
this case, desired maximum force value can be raised up to
4 N, and as a result, we can see smooth and accurate force
trajectory as well as the case of twin-twisted configuration
in T = 7 sec.

V. CONCLUDING REMARKS

This paper introduced a novel joint mechanism composed
of an antagonistically-twisted round-belt actuator, which is
able to make rotating motion by means of contraction forces
induced by twisting small-diameter elastically-deformable
round-belts. We performed several fundamental experiments
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respectively. In this experiments, a simple P controller for force feedback control is applied to one-sided twin-twisted configuration of ARA robot. A set
of different gains in forward and backward twisting motions is adopted to obtain most good performances. Note that graph (c) is a result of one-sided

triple-twisted configuration of the robot.
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Fig. 10. These figures show time responses of twist rotation of the round-belts. The rotation of the agonist actuator, 1, smoothly changes according to
the force control, on the other hand, that of the antagonist actuator, @2, remains constant at 1 rev. for maintaining prevention of the round-belts’ looseness.

to clarify the physical performance of the round-belts, in
which static and dynamic twisting motions are applied to
single/multiple round-belts. As a result, we showed the
hysteresis property and stress relaxation phenomenon of the
system in terms of contraction forces regardless of the num-
ber of round-belts. Next, this study demonstrated contraction
force control and contact force control, respectively, in
which we designed a one-sided twin/triple-twisted round-belt
configuration in order to obtain more large force measure-
ments. We revealed from the results that a traditional simple
proportional controller is stable enough for force feedback
strategy to achieve a great success with no visible errors. In
addition, we exhibited that the negative physical properties
of round-belts do not influence the control performance of
force feedback systems.
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Contact Force Tracking Control on Twist-drive Mechanism
with Polyurethane Small-diameter Round-belts
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Ryuichi MIYATA, Okayama Pref. Univ., cd27053k@ss.oka-pu.ac.jp
Takahiro INOUE, Okayama Pref. Univ., inoue@ss.oka-pu.ac.jp

This paper develops a novel robotic joint mechanism having a pair of polyurethane round-belts, which are
placed on both sides around the joint. This mechanism is based on antagonistic configuration by the round-
belts activated by twisting motion by means of individual DC motors. This novel mechanism enables the
robotic joint to move around its axis due to contraction forces induced by twisting both the round-belts.
Next, this paper shows the results of the tracking control experiments for two different target contact forces.
We demonstrate a tracking control for target trajectory of contact forces, in which an input function is given
as a stepwise command, in order to verify the dynamic performance in time response. In this experiment, the
command is sent only to a DC motor for agonist muscle motions. Another experiment is the tracking control
with respect to a sinusoidal target value. From these results, we conclude that the twist-drive actuation
system is able to achieve precise force control with no errors.

Key Words: Twist-drive, Tracking control, Agonist-antagonist joint, Contact force, Round-belt.
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Parallel Double Twist-drive Actuator Using Small-diameter Round-belts
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Takahiro UEDA, Okayama Pref. Univ., ¢324008b@ss.oka-pu.ac.jp
Takahiro INOUE, Okayama Pref. Univ., inoue@ss.oka-pu.ac.jp

In this paper, we develop a parallel double twist-drive actuator as a new mechanism using the small-diameter
round-belt. This actuation structures include compact designs, light-weight mechanical structures. We focus
on the control performance of contraction forces of a twisted string. With respect to round-belt, there exists
stress relaxation phenomenon, and we reveal that it is accurate control of force contraction against such
stress relaxation by increasing the twist rotation of round-belt. On the other hand, this paper proposes a
new contraction force model, which is caused by twisting a small-diameter round-belt. First, we divide the
deformation of round-belt into two processes: twisting of round-belt itself and wrapping around each other.
Second, we describe displacements in both the deformation processes in detail, and show simulation results of
contraction forces by twisting. Finally, by comparing the experimental result with theoretical value obtained
before, we can conclude that the modeling method including two properties during the twisting is reasonable
for formulation of contraction force generated by small-diameter round-belt.

Key Words: round-belt, twist, contraction force, parallel double twist-drive actuator, modeling.
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Static and Dynamic Characteristic of Tendon Driven
Robotic Finger Imitating Human Finger

OFAR s, Hk & (R EAR)

Yusuke ARAKI, Takahiro INOUE, Okayama Pref. Univ., ¢325002u@ss.oka-pu.ac.jp

This paper newly developed a three-joint robotic finger on the basis of biomechanical structure of human
fingers. This finger consists of MP, PIP, and DIP joints activated by two tendons and motors. This tendon
driven mechanism is designed to create secure coupled motion of the joints, which can be realized by applying
different insertion configuration of the tendons. We experimentally verify that the bioinspired mechanism is
appropriate for adaptable grasping. Finally, this study identifies a transfer function model with respect to

the tapping force from dynamic repetitive motion.

Key Words: tendon driven, robotic finger, static and dynamic sharacteristic, transfer function
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iz (M MM z It AN A AN
el Hosb LAV
cl R
" TS
0 o‘“‘J
o 1 2 3 4 5 6 o 1 2 3 4 5
time [sl time [sl
(a) T =1.6s (b) T =0.9s
10 AR A A Nrooa 10
ol ANV L e §
= qu IAARALE BN A AR I
E o
° ' ’ tirr13e [514 ° ° ° ' ’ tinr31e [314 °
(¢) T=0.3s (d) T=0.1s

Fig.8 These figure shows the swings of force of fingertip.
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Position and Force Control by Asymmetrical Round-belt
Drive Mechanism for Robotic Finger

ORA & (FIEA), HE & (FELERX)

Itaru OKAMOTO, Takahiro INOUE Okayama Pref. Univ., ¢325010b@ss.oka-pu.ac.jp

In this paper, we develop a novel robotic joint mechanism that has a polyurethane round-belt and a linear
spring placed on each side of the joint.This mechanism is based on antagonistic mechanical configuration
by the round-belt activated by twisting motion.This mechanism enables the robotic joint to move around
its axis according to the contraction force generated by the twisting.In addition, antagonistic side of the
joint generates passive tension by the spring,which may reduce the range of motion of the joint. In order
to improve that problem,this study newly modified the joint mechanism so that the tensile force can be

eliminated by maintaining natural length of the spring.

Key Words: round-belt, position control, force control
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Fig.2 It shows experimental comparison of the range of
motion with respect to the proposed mechanism.
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Development of Tendon Driven Robot Finger for Adaptable Grasp

Yusuke ARAKI and Takahiro INOUE (Okayama Pref. Univ.)

Abstract—In this paper, we develop a novel mechanism of three joints robotic finger that has interlocking move-
ment of each joints. This mechanism is based on the tendon drive by winding the yarn in the DC motor. Moreover,
in this mechanism realize the interlocked flection-extension of each joint by providing joint rotational restriction.
This paper shows experimental results of contact force of the robot fingers in proportion to the number of the ten-
don increases. Finally, we show the experimental results of the adaptive gripping the object of the three different
shapes by the simple PI control that controls the amount of the winding tendon.
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Fig.4 It shows experimental results of grasping force
by the tip of the robot finger.
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Table 1 The specification of grasping objects.

Objects Mass [g] | Diameter [mm]
Screwdriver 38 31

Sprayer 108 59
Small wheel 578 97
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(a) Screwdriver (b) Sprayer

(¢) Small wheel

Fig.5 Result of grasping experiment.
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Development of a robot joint mechanism disposed opposite to each other by Small
diameter Round-belts and linear springs

Itaru OKAMOTO(Okayama Pref. Univ.) and Takahiro INOUE (Okayama Pref. Univ.)

Abstract—In this paper, we develop a novel robotic joint mechanism that has a polyurethane round-belt and
linear spring placed on both side of the joint. This mechanism is based on antagonistic configuration by the round-
belt, which is activated by twisting motion generated by a DC motor. This novel mechanism realizes that the
robotic joint is able to move around its axis due to contraction force generated by twisting the round-belt. On the
other hand, antagonistic side proposes a novel mechanism to stretch passively robotic joint by tensile force of the
linear spring. This paper shows experimental results of the tracking control for sinusoidal target trajectory of twist
amount of the round belt. Finally, this robotic joint mechanism demonstrates that is able to grip an object by two

fingers robots are arranged in parallel.
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Fig.1 The amount of shrinkage due to the winding of
the round belt.
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(a)drive mechanism (b)overall view

Fig.2 These figures show a robotic hand that is con-
figured by a twisted round-belt actuator and single
joint robot. The mechanism performs passive ex-
tension by a linear spring.
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(a)twist rotation (b)twist rotation error

Fig.3 These figures show experimental results of tra-
jectory tracking control of twist rotation for desired
sinusoidal function.

Fig.4 Grasping a pen.
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